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ABSTRACT 

The longitudinal and transverse wake forces in a dielectric-lined waveguide are eval- 

uated numerically. Analytic expressions are given for the special cases when the dielec- 

tric is thin and thick. The results are compared with the wake forces in an iris-loaded 

waveguide. 
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I. INTRODUCTION 

Wake field accelerators1~2-3 are of great interest because of their potential for provid- 

ing very high acceleration gradients for the next generation of accelerators. They will be 

of more interest if the transverse wake force is small enough so that beam breakup4 will 

no longer pose a problem. In Ref. 5, we considered a waveguide consisting of a cylindri- 

cal metallic tube of radius a with infinite wall conductivity and filled partially with an 

isotropic material of dielectric constant E between radii b < T < a. We showed vigorously 

that the transverse wake force does not vanish even when V, the velocity of the source 

particle, approaches c, the velocity of light. However, it was shown experimentally6 

that transverse deflections appeared to be much smaller in dielectric-lined waveguides 

than in structured-waveguides and plasma-waveguides. 7-* It is therefore of great interest 

to evaluate the longitudinal and transverse wake forces in the dielectric waveguide, so 

that comparison can be made with other wake-field devices. 

II. SOME FORMULAS 

Consider a source particle carrying charge p travels with velocity a = PC along the 

cylindrical dielectric-loaded waveguide at an offset ~0 from its axis. A test particle 

carrying charge e travels at the same velocity lagging at a distance z behind and at an 

offset T. The m = 0 longitudinal force on the test particle can be written, according to 

Eq. (3.9) of Ref. 5, as 

where 

Fzo(.z) = -$ c ~z:ox(m) ~0s ,s , 
x 

jz:,x = - 4 ~oxPo(+ox) 
4 ‘Db(%X) ’ 

z,,x is the X-th positive zero of ‘Do, and t = bf a is the ratio of the inner radius to 

the outer radius of the dielectric. Similarly, with the aid of Eq. (4.7) of Ref. 5 and 

Panofsky’s theorem,g the m 2 1 transverse force can be written as 

F,,(T,z;T~) = f$ (T)” (~)~-l~~~-~(~~~)sin.~ , (2.3) 

where 

knx = 
8mvGTPm(%x)rm(+mx) 

I 
2m 

qJ%A) ’ (2.4) 



and +,,,A is the A-th positive zero of ‘0,. In the above, the analytic functions Do and 

V,,, are given by 

G(2) = “Pb + 2Pll , (2.5) 

Vm(l) = 
1 
s - mh+l) 1 PmT?n + 4[EP;T, + p~;Pm] m#O. (2.6) 

For simplicity, the relative magnetic permeability p of the dielectric has been put equal 

to unity. The cross-products of Bessel functions in Eqs. (2.5) and (2.6) are defined as 

IAn = Jm(~)Ym(~1) - L(~)Jm(4) , 

+?TL(z) = J;(ic)ym(4) - Y~(~).L(~I) , 

P;(z) = Jm(~)Y~(4) - Ym(~)J~(~O 1 

T;(z) = .$(z)YA(z[) - Y;(z)JA(z() . (2.7) 

In the event that Z&(z) [D,,,(r)] is not analytic, it can be made analytic by multiplication 

of z to an appropriate power. Needless to say, we have to multiply the numerator of 

Eq. (2.2) [Eq. (2.4)] by the same power of z. 

In below, the dimensionless reduced wake forces @=;,,A and jV,,,x will be evaluated. 

The zeroes z,,i and t,~ are dimensionless reduced eigen frequencies of the eigen modes. 

The true eigen frequencies are given by w,~ = r,,,,~c/am. 

III. THIN DIELECTRIC LINING 

Let a6 denote the thickness of the dielectric lining; a 6 = 1 - [. Here we consider 

the situation of a thin lining; i.e., 6 << 1. In Eq. (2.7), p,, pk, T,, and T; are defined 

as functions of 2 = sa and x[ = sb = z - x6. When ax5 < 1, we Taylor expand them 

up to 6. With the aid of the wronskian of J,,, and Y, as well as the Bessel equation, 

we obtain 

p,(z) = -; 

2(1+ 6) 
Pi?%(~) = lTI 



(JLI?) = -; i ) 1-g (3.1) 

Thus, retaining only the lowest order of 6, 

Do(z) = i -g- , 

and for m # 0, 

zDm(z,=$[~-~] 

We see that there is only one positive zero in Eq. (3.2) or (3.3), namely, 

+01 = 

%nl = d 
(m+lb mZo 

6 

(3.2) 

(3.3) 

This justifies the approximation used to obtain Eqs. (3.1); i.e., x6 < 1 when the 

dielectric is sufficiently thin. The eigrn frequency happens to be the same for the 

m = 0 and m = 1 modes. One can compute easily the reduced wake forces, 

@ZOl = 4 I (3.5) 

L = 4m 
J 

(E- l)(m + 116 
E (3.6) 

The ratio of the reduced forces are 

The behavior of the limit 6 + 0 is not intuitive. As 6 -a 0, one expects the 

absence of the dielectric lining leaving behind a perfectly conducting pipe wall. The 

electromagnetic fields generated by source particle are therefore just the ordinary space- 

charge fields, which we have omitted after setting y 4 co. However, the longitudinal 

wake force as shown by Eq. (3.5) d oes not vanish as 6 + 0. Thus, an infinitely thin 

dielectric lining does not imply no dielectric lining. Our evaluation of the wake forces 

here bases on Eqs. (2.1) and (2.3), where 7 >> W~/C is assumed. With the substitution 

of Eq. (3.4), this assumption becomes 7 > J2E/60. As a result, OUT calculation 

cannot lead to the situation of 6 = 0, or the removal of the dielectric lining. 
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IV. THICK DIELECTRIC LINING 

Here, we consider the situation when the inner radius of the dielectric b = a( 

approaches zero. Assuming that xt < 1, we use the large-argument expansions of 

Bessel functions to obtain 

PO(~) = i 1,: + c Jo(z) - &(z) , 
( ) 

P;(z) = $Jo(4 + $Yo(z) , (4.1) 

where c = 0.57722 is an Euler number. Retaining only the lowest order in x[, we get 

Vo(z) = SJo(z) + y- l) . 

Since x[ << 1, the X-th zero zox of Do should b e very close to the X-th zero z,,~ of Jo. 

If we write 

zox = 50x + Aox , (4.3) 

Jo(w) = AoxJ;(~ox) = -AoxJ~(~ox) . (4.4) 

We can then solve from Eq. (4.2) the X-th zero of ‘Do, 

20x = zox + ,(, - 1) 
E 

The corresponding m = 0 reduced longitudinal wake force becomes 

@=;,,A = ~ 
27%x Yo(Zo,) 

e JI(%x) . 

(4.5) 

(4.6) 

We see that the eigen frequencies approach those of the TMax modes in a cylindrical 

dielectric-filled waveguide. In fact, this is to be expected because the dielectric becomes 

filling the whole waveguide when E + 0. 

The higher-order reduced forces can be computed similarly. With x,$ < 1 and 

7i-l # 0, 

Pm(Z) = -y l)! $ m 
01 

Jm(+) + ,!(,“- 1)1 (;)‘“Ym(z)] , 
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(4.7) 

If the terms involving Y, and YA are neglected as we take the limit x[ --t 0, it is easy 

to see that 

%(~) 0: Jm(~)J;(r) . (4.8) 

Thus, the eigen modes are characterized by &,,A, the X-th zero of J,,,, and ;ckx, the 

X-th zero of .Jk. However, the reduced transverse force E;,,,x which is proportional to 

p,,,r,,, as depicted by Eq. (2.4) will vanish identically. As a result, we must compute the 

zeroes of Dm(z) to the next order in xt. Denote the two series of zeroes by 

%%A = %a+&.~, 
I 

GLA = *Lx + A;, 

Near the zeroes of “,,,A, we have 

(4.9) 

(4.10) 

Dm(z) = - 2y; l)! (~)‘mJ~(z) [b+ l).&%(z) + ,!(,“- 1)! ($xd] 

(4.11) 
We expand J,(a) near &,,A to obtain 

Jm(~,x) = &nJ~(%n~) , (4.12) 

and solve Eq. (4.11) to get 

A 
1 7r cd 

( ) 

*m Y,(%A) 
mX= E+lm!(m-l)! 2 J&(%nA) . 

We are now able to compute up to the next order of x1, 

Prn(G+-m(%x) = - +&J;(G*)Ym(LA) , 

(4.13) 

(4.14) 
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and arrive at the corresponding reduced transverse force 

kd = 
q/G3 4x GA 2m Ym(%%A) 
(E + l)Z m!(m - l)! ( > 2 J;(%r) . 

(4.15) 

Near the zeroes xkx, we have 

%&(a) = - 
2m!(m - l)! 

x2 (g*Jm(4 [(.+I)Jm+n!(~~l)! (~)2mm4] 

(4.16) 
Since 

.I;(&,) N A.7;(&) = -A,, (4.17) 

we obtain 

A;, = E ?r 1 2m YA(Z&) 
E + 1 m!(m - l)! 1 - m~/z~x Jm(%) . 

(4.18) 

Now we can compute up to the next order of xl 

Pm(ddm(+lx) = &~J~(c&~,(“~“) . (4.19) 

and arrive at the corresponding reduced transverse force 

anl 
1 Y7(%A) 

1 - rnZ/f$ .&(z;J . 
(4.20) 

As expected, when t + 0, the two series of reduced eigen frequencies z,,,i and 

zLx (m # 0) correspond to the TM,x and TE,x modes in a cylindrical dielectric- 

filled waveguide. In the present dielectric-lined waveguide, the modes are hybrid and 

are referred to as HM,x and HE,x instead. The lowest mode at t = 0 is the HEll 

mode, with I’ 11 = 1.8411, which is lower than the lowest longitudinal HMol mode with 

zol = 2.405. The lowest transverse HM mode at [ = 0 is zll = 3.8171. 

V. NUMERICAL EVALUATION 

The wake forces corresponding to thin-dielectric and thick-dielectric limits have 

been evaluated analytically. In between, no simple analytic formulas are possible and 
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numerical evaluation is necessary. The zeroes of ‘Do and V,,, are first located and the 

summations in Eqs. (2.1) and (2.3) are performed term by term. 

Experimentally, the source is not a single particle but a source bunch of total charge 

q having a rms longitudinal length gi. If the center of the bunch travels according to 

z = ct and the longitudinal charge distribution is gaussian, the wakes left behind are 

again given by Eq. (2.1) and (2.3) with each term in the summand multiplied, in the 

limit ,L? + 1, by 

exp [-; (.&)‘I . (5.1) 

Since gt is finite, consequently only the first few characteristic waves will contribute 

significantly. For the sake of clarity, we shall restrict ourselves to the lowest mode in 

the following discussion. 

The reduced eigen frequencies corresponding to the lowest m = 0 longitudinal mode 

zol (TM,,) and lowest m = 1 transverse mode & (HE,,) are shown, respectively, in 

Figs. 1 and 2 for [ ranging from 0 to 1, with dielectric constant E = 1.2, 2.0, 3.0, and 

4.0. The ratio of the two lowest eigen frequencies is displayed in Fig. 3. In general, 

larger dielectric constant leads to higher eigen frequencies. The lowest reduced eigen 

frequencies for the monopole and dipole modes start off from, respectively, z,,~ = 2.405 

and & = 1.841 at [ = 0, increase rather slowly with t when < 5 0.5, but increase 

rapidly to infinity according to Eq. (3.4) afterward. 

The reduced (m = 0) longitudinal and (m = 1) wake forces of the lowest modes, 

~ZOI and &,, are shown, respectively, in Figs. 4 and 5, and their ratio in Fig. 6. We see 

that the reduced transverse force as well as the ratio of transverse to longitudinal forces 

start off almost constant at t - 1 and increase rather slowly with larger t. They vanish 

rapidly only when [ is sufficiently close to 1; or when the dielectric lining is sufficiently 

thin. However, [ Y 1 is not a good region to operate a wakefield accelerator. The wake 

fields are generated by Cerenkov radiation inside the dielectric, and when the dielectric 

lining is thin, such radiation is minimal. In addition, the wake field wavelength will be 

too short to work with. This is seen by examining the cosine factor in Eq. (2.1) with an 

extremely high reduced eigen frequency (- 6-‘/a) as depicted in Eq. (3.4) and Fig. 1. 

To avoid large transverse forces, the other option appears to be the sector of small I. 

This is the configuration of thick dielectric lining. For this reason, the analytic formulas 

developed for thick dielectric lining are very good approximation in practice. In this 
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region, the reduced transverse wake force k,‘:‘,, depends on the dielectric constant mainly 

through the factor m/(e t 1)’ and weakly through &, as indicated by Eq. (4.20). 

Consequently, we see (also in Fig. 2) &, reach a maximum at E x 5/3, and decrease 

at larger E. However, ?=,,, decreases with dielectric constant as l/e as depicted in 

Eq. (4.6) and Fig. 1. The result is that the ratio ~,!‘:,,/~z:,, decreases with E (when 

E > 1). Therefore, to reduce $!“:,, as well as ?~II/~zO1, a large c is favored. 

As an illustration, let us consider a cylindrical waveguide with outer radius a = I cm 

lined with a material having a dielectric constant E = 3. The thickness of the material is 

taken as a-b = 0.8 cm, or t = 0.2 The lowest reduced eigen frequencies are zol = 2.518 

for m = 0 and z 11 = 1.954 for m = 1. They correspond to frequencies woI/2n = 

8.496 GHz and wIl/27r = 6.591 GHz. The reduced wake forces are, respectively, $‘=‘,,, = 

4.381 for m = 0 and &“, = 1.464 for m = 1. Using Eq. (2.1) multiplied by Z0c/4n 

where Zo = 377 ohms to convert the force to mks units, we obtain the longitudinal 

acceleration gradient 3.943 x 1Ol4 eV/m/C, or 39.4 MeV/m for a source bunch of 

100 nC. Using Eq. (2.2), we obtain a transverse force of 1.32 x 101srO eV/m/C where 

TO is the offset of the source bunch from the axis of the waveguide expressed in m. The 

accelerating longitudinal force Fol (aside from the cosine factor) scales with a-‘, while 

the dipole transverse force F,, (aside from the sine factor) scales with a-s. Therefore, 

increasing the outside radius of the waveguide will lower the transverse force by very 

much. Although not as fast, however, the accelerating force will be decreased also. 

As a comparison, let us consider an iris-loaded waveguide having inner and outer iris 

radii b = 5.11 cm and a = 10 cm respectively. Numerical calculation”’ reveals a longitu- 

dinal field of frequency 1.15 GHz and a dipole traverse force of 1.2 x 10’%,,(m) eV/m/C. 

For a dielectric waveguide of the same frequency, we need a guide radius of a = 7.40 cm 

provided that we keep b/a = 0.2 and L = 3. The dipole transverse wake force turns 

out to be 3.25 x 10’%,,(m) eV/m/C, which is 3.7 times less than that of the iris-loaded 

waveguide. With suitable choices of parameters, it is possible that the dielectric-lined 

waveguide can have smaller deflecting wake forces than the iris-loaded waveguide. 

VI. DISCUSSIONS 

Simple analytic expressions for the reduced longitudinal and transverse forces have 

been derived in the limits when the dielectric lining is thin as well as thick. Numeri- 
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cal computation of the lowest modes have also been performed. We learn from these 

calculations that the reduced dipole transverse wake force has the same order of mag- 

nitude as the monopole longitudinal wake force except when the dielectric lining is 

very thin. This conclusion may not be in contradiction to what was observed experi- 

mentally in Ref. 6. This is because the deflecting wake force has never been actually 

measured there. In that experiment, the inner and outer radii of the three dielectric 

materials are, respectively, b = 0.63 cm and a = 1.27 cm. The three materials have 

dielectric constants 6 X 3.1, 5.9, and 3.9. According to our calculation, the deflecting 

force should be, respectively, 8.0 x 10’6ro(m) eV/m/C, 4.7 x 1O16r0(m) eV/m/C, and 

6.8 x 1O16r0(m) eV/m/C. 

The author would like to thank Drs. Wei Gai and Jim Rosenzweig for useful and 

encouraging discussions. 

Note added in revision 

During the writeup of this paper, the author was aware of similar work by other 

authors. Gluckstern” gave analytic expressions of the wake forces in the limit of a thin 

dielectric. Rosing” computed numerically the m = 0 longitudinal wake force. 
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Figure Captions 

Fig. 1. Lowest reduced eigen frequency of the m = 0 longitudinal mode. 

Fig. 2. Lowest reduced eigen frequency of the m = 1 transverse mode. 

Fig. 3. Ratio of lowest m = 1 eigen frequency to lowest m = 0 eigen frequency. 

Fig. 4. Reduced m = 0 longitudinal force kzO, of the lowest mode. 

Fig. 5. Reduced m = 1 transverse force $,!,, of the lowest mode. 

Fig. 6. Ratio of transverse force to longitudinal force. k~,,/~zOI. Both forces are of the 

lowest modes. 
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